02 Apr Pancreatic cancer-on-chip incorporates patient-derived organoids for drug efficacy analysis
“Here, we combine an acoustically driven manipulation device with a micro-force sensor to freely rotate biological samples and quantify mechanical properties at multiple regions of interest within a specimen. The versatility of this tool is demonstrated through the analysis of single Lilium longiflorum pollen grains, in combination with numerical simulations, and individual Caenorhabditis elegans nematodes.”, the authors explained.
The open microfluidic device was made from PDMS using conventional microfluidic microfabrication methods. The open microchannel contained a linear array of rectangular microcavities which were used to trap microbubbles. The hydrophobic/hydrophilic interaction caused the locally confined microbubbles to stay trapped inside the microcavities during the experiment. The specimen was then introduced to the microchannel and positioned near the microbubbles. A piezo transducer placed near the microfluidic device excited the microbubbles resulting in the formation of microvortices near the microbubble and in the surrounding liquid as shown in the image. These microvortices exerted force on the specimen and resulted in rotation of the specimen. 41467_2021_22718_MOESM3_ESMMicrochannels can guide the axons and promote controlled directional growth. The microfluidic channel dimensions can impact the growth of the axons and were thus optimized in this study for robust isolation of axons of hPSC-derived neurons. The surface of the microfluidic chips was functionalized with a photo-responsive material containing the azobenzene. The surface of the microchannel could reversibly change in response to the light irradiation and thus could be used for modulating the axonal growth and alignment in the desired direction.“In this study, we showed that successful isolation of axons from somas and dendrites combined with the robust axonal outgrowth of hPSC-derived and rat primary cortical neurons in a compartmentalized microfluidic PDMS device is greatly influenced by the cross-sectional area and the length of the separating microtunnels. Furthermore, we created an hPSC-derived neuron-based axonal model consisting of a compartmentalized PDMS microtunnel chip integrated with photoinscribed nanotopography on light-responsive, azobenzene-based molecular glass.”, the authors concluded.
Read the original article: Directional Growth of Human Neuronal Axons in a Microfluidic Device with Nanotopography on Azobenzene‐Based MaterialPouriya Bayat
Pouriya is a microfluidic production engineer at uFluidix. He received his B.Sc. and M.A.Sc. both in Mechanical Engineering from Isfahan University of Technology and York University, respectively. During his master’s studies, he had the chance to learn the foundations of microfluidic technology at ACUTE Lab where he focused on designing microfluidic platforms for cell washing and isolation. Upon graduation, he joined uFluidix to even further enjoy designing, manufacturing, and experimenting with microfluidic chips. In his free time, you might find him reading a psychology/philosophy/fantasy book while refilling his coffee every half an hour. Is there a must-read book in your mind, do not hesitate to hit him up with your to-read list.