“Infrared (IR) plasmonic nanoantennas (PNAs) are powerful tools to identify molecules by the IR fingerprint absorption from plasmon-molecules interaction. However, the sensitivity and bandwidth of PNAs are limited by the small overlap between molecules and sensing hotspots and the sharp plasmonic resonance peaks. In addition to intuitive methods like enhancement of electric field of PNAs and enrichment of molecules on PNAs surfaces, we propose a loss engineering method to optimize damping rate by reducing radiative loss using hook nanoantennas (HNAs). Furthermore, with the spectral multiplexing of the HNAs from gradient dimension, the wavelength-multiplexed HNAs (WMHNAs) serve as ultrasensitive vibrational probes in a continuous ultra-broadband region (wavelengths from 6 μm to 9 μm). Leveraging the multi-dimensional features captured by WMHNA, we develop a machine learning method to extract complementary physical and chemical information from molecules. The proof-of-concept demonstration of molecular recognition from mixed alcohols (methanol, ethanol, and isopropanol) shows 100% identification accuracy from the microfluidic integrated WMHNAs. Our work brings another degree of freedom to optimize PNAs towards small-volume, real-time, label-free molecular recognition from various species in low concentrations for chemical and biological diagnostics.”
Figures and the abstract are reproduced from Ren, Z., Zhang, Z., Wei, J. et al. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat Commun 13, 3859 (2022). https://doi.org/10.1038/s41467-022-31520-z under Creative Commons Attribution 4.0 International License.
Read the original article: Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy
Leukocyte differentiation and counting are critical for clinical diagnostics but are hindered by the low…
Screening for microbial proteolytic activity is essential in various biotechnological applications, including bioenergy, food processing,…
Understanding how cellular components, especially chromatin and nuclear condensates, respond to mechanical forces during confined…
In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…
In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…
Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…