Latest Research

Microfluidics, Nanoantennas, and Machine learning: A successful combination for molecular sensing

Abstract

“Infrared (IR) plasmonic nanoantennas (PNAs) are powerful tools to identify molecules by the IR fingerprint absorption from plasmon-molecules interaction. However, the sensitivity and bandwidth of PNAs are limited by the small overlap between molecules and sensing hotspots and the sharp plasmonic resonance peaks. In addition to intuitive methods like enhancement of electric field of PNAs and enrichment of molecules on PNAs surfaces, we propose a loss engineering method to optimize damping rate by reducing radiative loss using hook nanoantennas (HNAs). Furthermore, with the spectral multiplexing of the HNAs from gradient dimension, the wavelength-multiplexed HNAs (WMHNAs) serve as ultrasensitive vibrational probes in a continuous ultra-broadband region (wavelengths from 6 μm to 9 μm). Leveraging the multi-dimensional features captured by WMHNA, we develop a machine learning method to extract complementary physical and chemical information from molecules. The proof-of-concept demonstration of molecular recognition from mixed alcohols (methanol, ethanol, and isopropanol) shows 100% identification accuracy from the microfluidic integrated WMHNAs. Our work brings another degree of freedom to optimize PNAs towards small-volume, real-time, label-free molecular recognition from various species in low concentrations for chemical and biological diagnostics.

 

a Schematic drawing of WMHNA on CaF2 platform with PDMS microfluidic chamber. Inset SEM image of one unit cell of WMHNA. b The far-field spectra of WMHNA with and without water measured in the reflection mode of the FTIR microscope. c The reference IR absorption spectra of alcoholic liquid (methanol, ethanol, and isopropanol) in the IR fingerprint region match with the broadband response of WMHNA. d Illustration of multi-dimensional information in WMHNA system. (i) Refractometric effect (RE): wavelength shift caused by the refractive index of analytes; (ii) Spectroscopic effect (SE): intensity drop due to the absorption of analytes; (iii) Antenna loading effect (ALE): the peak difference brought by the wavelength mismatch between analytes vibration and antenna resonance. e Machine learning process to extract multi-dimensional sensing information for recognition of 1% alcohols and their mixtures in water.” Reproduced under Creative Commons Attribution 4.0 International License from Ren, Z., Zhang, Z., Wei, J. et al. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat Commun 13, 3859 (2022).


Figures and the abstract are reproduced from
Ren, Z., Zhang, Z., Wei, J. et al. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat Commun 13, 3859 (2022). https://doi.org/10.1038/s41467-022-31520-z under Creative Commons Attribution 4.0 International License.


Read the original article:
Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Fractal Pore Structures Amplify Bacterial Growth in Soil-inspired Microfluidic Environments

Soil hosts dense and diverse microbial communities that drive major ecological processes, yet the way…

November 30, 2025

Multiplexed isothermal detection of respiratory viruses on an autonomously loaded microfluidic chip

The problem addressed in this study centers on the need for rapid and dependable point-of-care…

November 17, 2025

What Are Microfluidic Chips and Why They Matter in Canada

Microfluidic technology is changing how scientists work. It allows labs to run complex experiments using…

November 12, 2025

Mimicking Breathing: A Novel Alveoli-on-Chip Model Using Patient-Derived Cells

Recreating the complex mechanical environment of the human lung alveoli in vitro has long been…

November 10, 2025

Mapping the “Behaviorome” of Human Neutrophils in a Tumor-on-a-Chip System

Neutrophils, the most abundant immune cells in human blood, play a puzzling dual role in…

November 3, 2025

Microfluidic Mapping of the Molecular Aging of Protein Condensates

Biomolecular condensates, membraneless structures formed through phase separation of proteins and nucleic acids, play a…

October 7, 2025