Latest Research

Microfluidics for CRISPR-based multiplexed detection of nucleic acids

Abstract

“Fast, inexpensive, and multiplexed detection of multiple nucleic acids is of great importance to human health, yet it still represents a significant challenge. Herein, we propose a nucleic acid testing platform, named MiCaR, which couples a microfluidic device with CRISPR-Cas12a and multiplex recombinase polymerase amplification. With only one fluorescence probe, MiCaR can simultaneously test up to 30 nucleic acid targets through microfluidic space coding. The detection limit achieves 0.26 attomole, and the multiplexed assay takes only 40 min. We demonstrate the utility of MiCaR by efficiently detecting the nine HPV subtypes targeted by the 9-valent HPV vaccine, showing a sensitivity of 97.8% and specificity of 98.1% in the testing of 100 patient samples at risk for HPV infection. Additionally, we also show the generalizability of our approach by successfully testing eight of the most clinically relevant respiratory viruses. We anticipate this effective, undecorated and versatile platform to be widely used in multiplexed nucleic acid detection.

a Brief overview of the steps involved in the subtyping process. The collected cervical cell specimen is first thermolyzed. Then, RPA is performed to amplify the nine HPV subtypes. The amplicons are subsequently tested via the CRISPR-Cas12a system on the microfluidic device, followed by fluorescence imaging to obtain the readout. b On-chip testing principles. A 30-plexed starburst-shaped chip (SS-Chip) with one central inlet connected to 30 outlets is used. The outlets are preloaded with various Cas12a/crRNAs that recognize the relevant target HPV subtype. After the on-chip assay, the fluorescent readout at specific outlets (i.e., space coding) indicates the presence of relevant HPV subtypes in the sample.” Reproduced under a Creative Commons Attribution 4.0 International License from Xu, Z., Chen, D., Li, T. et al. Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nat Commun 13, 6480.

 

Figures and the abstract are reproduced from Xu, Z., Chen, D., Li, T. et al. Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nat Commun 13, 6480 (2022). https://doi.org/10.1038/s41467-022-34086-y under a Creative Commons Attribution 4.0 International License.

Read the original article: Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidic Mapping of the Molecular Aging of Protein Condensates

Biomolecular condensates, membraneless structures formed through phase separation of proteins and nucleic acids, play a…

October 7, 2025

A Modular Microfluidic Platform for Real-Time Biofilm Analysis

Biofilms, dense microbial communities on medical devices and tissues, are notoriously resistant to antibiotics, causing…

September 26, 2025

Microfluidic Nanoplasmonic Patch for Metabolite Profiling in Sweat

Tracking how our bodies respond to food, exercise, and stress requires tools that can capture…

September 19, 2025

Capillary Constrictions Can Prime Cancer Cell Tumorigenicity: A Microfluidic Study

Metastasis, the spread of cancer cells from primary tumors to distant organs, is responsible for…

September 18, 2025

Microfluidic Control of Time-varying Stimuli Reveals Nuclear Remodeling in NF-κB Signaling

Understanding how cells decode signals from their environment is a central challenge in biology. One…

August 24, 2025

Microfluidic nano-plasmonic imaging platform for purification- and label-free single small extracellular vesicle characterization

The detection and analysis of small extracellular vesicles (sEVs), such as exosomes, has attracted significant…

August 24, 2025