Latest Research

Microfluidics can help to determine the antioxidant capacity of RBCs to reduce the risk of anaemia during chemotherapy

Abstract

“Oxidative stress is one of the key factors that leads to red blood cells (RBCs) aging, and impairs their biomechanics and oxygen delivery. It occurs during numerous pathological processes and causes anaemia, one of the most frequent side effects of cancer chemotherapy. Here, we used microfluidics to simulate the microcirculation of RBCs under oxidative stress induced by tert-Butyl hydroperoxide. Oxidative stress was expected to make RBCs more rigid, which would lead to decrease their transit velocity in microfluidic channels. However, single-cell tracking combined with cytological and AFM studies reveals cell heterogeneity, which increases with the level of oxidative stress. The data indicates that the built-in antioxidant defence system has a limit exceeding which haemoglobin oxidation, membrane, and cytoskeleton transformation occurs. It leads to cell swelling, increased stiffness and adhesion, resulting in a decrease in the transit velocity in microcapillaries. However, even at high levels of oxidative stress, there are persistent cells in the population with an undisturbed biophysical phenotype that retain the ability to move in microcapillaries. Developed microfluidic analysis can be used to determine RBCs’ antioxidant capacity for the minimization of anaemia during cancer chemotherapy.

 

a Schematic view of the device; b an image of a single microchannel with control RBCs; c 1.5 mM tBuOOH treatment can lead to microchannel’s occlusion. t1 and t2 marks indicate the capturing points for determining cells’ transit time in microchannels.” Reproduced under Creative Commons Attribution 4.0 International License from Besedina, N.A., Skverchinskaya, E.A., Shmakov, S.V. et al. Persistent red blood cells retain their ability to move in microcapillaries under high levels of oxidative stress. Commun Biol 5, 659 (2022).


Figures and the abstract are reproduced from
Besedina, N.A., Skverchinskaya, E.A., Shmakov, S.V. et al. Persistent red blood cells retain their ability to move in microcapillaries under high levels of oxidative stress. Commun Biol 5, 659 (2022). https://doi.org/10.1038/s42003-022-03620-5

Read the original article: Microfluidic device for investigation of RBCs transport in microcapillaries

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Rapid culture-free pathogen diagnosis using microfluidics and Raman spectroscopy

Timely identification of infectious pathogens remains a major bottleneck in clinical care, particularly in conditions…

January 15, 2026

Acoustic probing for rapid sickle cell disease screening using microfluidic biomarkers

Early diagnosis of sickle cell disease remains a major challenge, particularly in low-resource settings where…

January 5, 2026

Carbonate-Mimicking Microfluidic Platform for CO₂–Seawater–Concrete Flooding

Understanding the interplay between surface chemistry, pore geometry, and flooding fluids remains a central challenge…

December 22, 2025

Fractal Pore Structures Amplify Bacterial Growth in Soil-inspired Microfluidic Environments

Soil hosts dense and diverse microbial communities that drive major ecological processes, yet the way…

November 30, 2025

Multiplexed isothermal detection of respiratory viruses on an autonomously loaded microfluidic chip

The problem addressed in this study centers on the need for rapid and dependable point-of-care…

November 17, 2025

What Are Microfluidic Chips and Why They Matter in Canada

Microfluidic technology is changing how scientists work. It allows labs to run complex experiments using…

November 12, 2025