“The pH value in the wound milieu plays a key role in cellular processes and cell cycle processes involved in the process of wound healing. Here, a microfluidic assembly technique is employed to fabricate micro-gel ensembles that can precisely tune the pH value of wound surface and accelerate wound healing. The micro-gel ensembles consist of poly (hydroxypropyl acrylate-co-acrylic acid)-magnesium ions (poly-(HPA-co-AA)-Mg2+) gel and carboxymethyl chitosan (CMCS) gel, which can release and absorb hydrogen ion (H+) separately at different stages of healing in response to the evolution of wound microenvironment. By regulating the wound pH to affect the proliferation and migration of cell on the wound and the activity of various biological factors in the wound, the physiological processes are greatly facilitated which results in much accelerated healing of chronic wound. This work presents an effective strategy in designing wound healing materials with vast potentials for chronic wound management.”
Figures and the abstract are reproduced from Cui, T., Yu, J., Wang, C.-F., Chen, S., Li, Q., Guo, K., Qing, R., Wang, G., Ren, J., Micro-Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation. Adv. Sci. 2022, 2201254. https://doi.org/10.1002/advs.202201254
under Creative Commons Attribution 4.0 International License.
Read the original article: Micro-Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation
In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…
In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…
Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…
Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…
Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…
Recent advancements in microfabrication of microfluidic chips are pushing the boundaries of nanoparticle design, offering…