Latest Research

Microfluidically generated gels enhance chronic wound healing by pH regulation

Abstract

“The pH value in the wound milieu plays a key role in cellular processes and cell cycle processes involved in the process of wound healing. Here, a microfluidic assembly technique is employed to fabricate micro-gel ensembles that can precisely tune the pH value of wound surface and accelerate wound healing. The micro-gel ensembles consist of poly (hydroxypropyl acrylate-co-acrylic acid)-magnesium ions (poly-(HPA-co-AA)-Mg2+) gel and carboxymethyl chitosan (CMCS) gel, which can release and absorb hydrogen ion (H+) separately at different stages of healing in response to the evolution of wound microenvironment. By regulating the wound pH to affect the proliferation and migration of cell on the wound and the activity of various biological factors in the wound, the physiological processes are greatly facilitated which results in much accelerated healing of chronic wound. This work presents an effective strategy in designing wound healing materials with vast potentials for chronic wound management.

“Formation and application of micro-gel ensembles. a) Schematic synthesis of micro-gel ensembles via hydrogen bonding of Gel 1 and Gel 2. b) Microfluidic assembly of Gel 1 and 2 into micro-gel ensembles with various macrostructures using specific microfluidic chips and channels. c) The pH regulating mechanism of micro-gel ensembles for skin wound treatments, and d) the corresponding skin healing mechanism. Initially, the -COOH group on the surface of Gel 1 releases free H+ into the wound microenvironment, which adjust the pH of the wound during the early stage of skin healing. Then, the rich -NH2 group in Gel 2 absorbs free H+ from the microenvironment, converting to NH3+ and destroying the bacterial membrane structures, thus protecting the wound whilst regulating the pH value of the wound during the late stages of skin healing. Finally, micro-gel ensembles regulate the wound’s microenvironment, facilitating rapid healing process (anti-infective, adipocyte covering wound, and macrophage polarization).” Reproduced under Creative Commons Attribution 4.0 International License from Cui, T., Yu, J., Wang, C.-F., Chen, S., Li, Q., Guo, K., Qing, R., Wang, G., Ren, J., Micro-Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation. Adv. Sci. 2022, 2201254.

Figures and the abstract are reproduced from Cui, T., Yu, J., Wang, C.-F., Chen, S., Li, Q., Guo, K., Qing, R., Wang, G., Ren, J., Micro-Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation. Adv. Sci. 2022, 2201254. https://doi.org/10.1002/advs.202201254
under Creative Commons Attribution 4.0 International License.


Read the original article:
Micro-Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Advances in High-Accuracy, High-Throughput Droplet Microfluidic Sorting Using Dual Fluorescence and Size-Based Selection

In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…

November 6, 2024

Microfluidically Engineered Hydrogel Beads for Complex Protein Characterization

In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…

October 19, 2024

Advancements in Protein Sizing with Single-Molecule Microfluidic Diffusional Sizing

Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…

September 14, 2024

Exploring the Stability of Tumor-on-a-Chip Models with Polydopamine Coatings

Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…

August 31, 2024

Microfluidic Platform for Monitoring Microglial Dynamics in Neuroinflammatory Conditions

Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…

August 19, 2024

Advancing Nanoparticle Design: Microfluidic Synthesis of Complex Liposomes

Recent advancements in microfabrication of microfluidic chips are pushing the boundaries of nanoparticle design, offering…

July 29, 2024