Latest Research

Microfluidically-generated barcodes can help the battle against counterfeit products

Abstract

“A microfluidic platform for continuous synthesis of hydrogel microparticles with superparamagnetic colloids (SPCs) embedded at prescribed positions is described. The shape of the cross-linked microparticle is independently controlled by stop–flow lithography, whereas the position of trapped SPCs are dictated by virtual magnetic moulds made of 2D nickel patches facilitating magnetic trapping. The spatial positions of trapped SPCs collectively function as a binary code matrix for product authentication. Analytical and finite element methods are combined to optimize the trapping efficiency of SPCs by systematically investigating magnetic field microgradients produced by nickel patches. It is envisioned that the proposed magnetic microparticles will contribute to the development of soft matter inspired product quality control, tracking and anti-counterfeiting technologies.

“Scheme of the hydrogel microparticles synthesis. a) Solution containing polymer (PEGDA), photoinitiator and superparamagnetic colloids(SPCs) are pumped through a microfluidic channel. The VMMs placed on the bottom of the channel are magnetized on-demand to trap SPCs. UV light passing through a mask placed at the field stop of the microscope crosslinks the PEGDA to trap SPCs are designated positions. b) Illustration of four steps involved in synthesis from the top view. c) Hydrogel microparticles responds to the external magnetic field and moves from one channel wall to the other when a permanent magnet is brought in contact. Extracted from Movie S1 (Supporting Information). d–g) The microscopy pictures of microparticles of different shapes with SPCs placed at designated position. Their scale bars are all 25 µm. The mask used in synthesis of each particle is given along with a 3D illustration of the microparticle with embedded SPC.” Reproduced under Creative Commons Attribution 4.0 International License from Zhang, M.Warth, T.Boon, N.Demirörs, A. F.Eral, H. B.Microfluidic Synthesis of Hydrogel Microparticles with Superparamagnetic Colloids Embedded at Prescribed Positions for Anticounterfeiting ApplicationsAdv. Mater. Interfaces 2022, 2200899.

Figures and the abstract are reproduced from Zhang, M.Warth, T.Boon, N.Demirörs, A. F.Eral, H. B.Microfluidic Synthesis of Hydrogel Microparticles with Superparamagnetic Colloids Embedded at Prescribed Positions for Anticounterfeiting ApplicationsAdv. Mater. Interfaces 2022, 2200899. https://doi.org/10.1002/admi.202200899

Read the original article: Microfluidic Synthesis of Hydrogel Microparticles with Superparamagnetic Colloids Embedded at Prescribed Positions for Anticounterfeiting Applications

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Exploring Microfluidic Leukapheresis for Pediatric Leukemia

Leukapheresis is a critical treatment for children with symptomatic hyperleukocytosis, a condition where extremely high…

March 3, 2025

Understanding Microbiome Influence on Melanoma Treatment Using Microfluidics Technology

Despite the significant advancements brought by immune checkpoint inhibitors (ICIs) in melanoma treatment, patient responses…

February 18, 2025

Microfluidic Research on C. elegans for Developmental Toxicity Testing: A Novel Machine Learning Approach

Traditional developmental toxicity (DevTox) studies largely rely on mammalian models to assess chemical impacts on…

February 4, 2025

Advancing Liquid Biopsies with High-Throughput Microfluidics

Circulating tumor cells (CTCs) hold the potential for cancer diagnosis and monitoring, offering a non-invasive…

January 20, 2025

Development of a Microfluidic Impedance Flow Cytometer

Leukocyte differentiation and counting are critical for clinical diagnostics but are hindered by the low…

January 6, 2025

Enhanced Screening of Proteolytic Microorganisms Using a Passive Droplet Microfluidic Platform

Screening for microbial proteolytic activity is essential in various biotechnological applications, including bioenergy, food processing,…

December 17, 2024