Latest Research

Microfluidic scale-down bioreactor for informed large-scale production

Scale-down reactors are essential for generating data on small scale and applying the observed improvement to larger and industrial scales. Microfluidic devices can be of great use in this sense. The reaction conditions could be carefully monitored while the volume of the reaction is scaled down to a few microliters to find the optimal reaction conditions. In this recent paper published in Biotechnology and Bioengineering, researchers microfabricated a microfluidic chip as a proof of concept for monitoring the growth of Corynebacterium glutamicum at oscillating pH values.

“Traditionally, scale-down systems at the laboratory scale are used to analyze the effects of fluctuating pH values on strains and thus process performance. Here, we demonstrate the application of dynamic microfluidic single-cell cultivation (dMSCC) as a novel scale-down system for the characterization of Corynebacterium glutamicum growth using oscillating pH conditions as a model stress factor. “, the authors explained.

“Design of the microfluidic chip for the dynamic cultivation of single cells and microcolonies under three environmental conditions. (a) dMSCC (dynamic microfluidic single-cell cultivation) chip with three inlets and one outlet per cultivation unit. (b) Illustration of the dMSCC design with parallel arrays of cultivation chambers. The three zones are separated by a cultivation array-free zone with a width of 400 µm. (c) Monolayer growth chambers. (d) Flow pattern at different cultivation conditions in dMSCC.” Reproduced under Creative Commons Attribution 4.0 International License from Täuber, S.Blöbaum, L.Steier, V.Oldiges, M., & Grünberger, A. (2022). Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating valuesBiotechnology and Bioengineering1– 16.

“A systematic pH oscillation study was performed with varying relative oscillation ratios, total interval durations, and different pH oscillation amplitudes. The results showed a significant effect of the different pH oscillations on the growth rate of C. glutamicum. The experiments were used to demonstrate that the presented microfluidic system can be used in the future as a scale-down tool and to show which information can be obtained by these systems compared to two-CR systems.“, the authors explained.

The figures and the abstract are reproduced from Täuber, S.Blöbaum, L.Steier, V.Oldiges, M., & Grünberger, A. (2022). Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating valuesBiotechnology and Bioengineering1– 16https://doi.org/10.1002/bit.28208 under Attribution 4.0 international (CC BY 4.0) licences.

Read the original article: Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating pH values Sarah Täuber,Luisa Blöbaum,Valentin Steier,Marco Oldiges,Alexander Grünberger

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidic Mapping of the Molecular Aging of Protein Condensates

Biomolecular condensates, membraneless structures formed through phase separation of proteins and nucleic acids, play a…

October 7, 2025

A Modular Microfluidic Platform for Real-Time Biofilm Analysis

Biofilms, dense microbial communities on medical devices and tissues, are notoriously resistant to antibiotics, causing…

September 26, 2025

Microfluidic Nanoplasmonic Patch for Metabolite Profiling in Sweat

Tracking how our bodies respond to food, exercise, and stress requires tools that can capture…

September 19, 2025

Capillary Constrictions Can Prime Cancer Cell Tumorigenicity: A Microfluidic Study

Metastasis, the spread of cancer cells from primary tumors to distant organs, is responsible for…

September 18, 2025

Microfluidic Control of Time-varying Stimuli Reveals Nuclear Remodeling in NF-κB Signaling

Understanding how cells decode signals from their environment is a central challenge in biology. One…

August 24, 2025

Microfluidic nano-plasmonic imaging platform for purification- and label-free single small extracellular vesicle characterization

The detection and analysis of small extracellular vesicles (sEVs), such as exosomes, has attracted significant…

August 24, 2025