Latest Research

Microfluidic platform measures cancer-derived metabolites for early diagnosis of prostate cancer

Early diagnosis of prostate cancer, the sixth deadliest cancer type in men, can significantly increase the survival rate. For most men, the 5-year survival rate for local or regional tumors is around 100%. This number drops to~30% when it spreads to other regions1. Therefore, early diagnosis of prostate cancer is of vital and of crucial importance. This calls for reliable and affordable tests to prevent late diagnosis or misdiagnosis of prostate cancer.  

A new advancement in the microfluidic front, aims at developing efficient and more accessible platform for prostate cancer diagnosis. A research team from Glasgow University proposed a panel-based test by employing a microfluidic device. The panel-based test needs a platform that is capable of simultaneous measurement of multiple metabolite markers that taken together can result in sensitive and specific results.  

“We report a microelectronic point-of-care metabolite biomarker measurement platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min.”, the authors elaborated.

The reported point-of-care device consists of three sections. A microfluidic device that serves as a disposable cartridge, a reader, and a Graphic User Interface (GUI). The microfluidic chip takes advantage of the abnormal metabolism of cancer cells. Cancer-cell metabolites can accumulate in the bodily fluids and screened as an indicator. The chip was then designed to quantify four metabolites associated with cancer cell namely, L-amino acids, glutamate, choline, and sarcosine. The microfluidic device was designed such that it created a passive flow of the sample over the sensing area. The sensing area uses a CMOS chip and embedded electronics for colorimetric and multiplexed detection of the metabolites. The microfluidic point-of-care platform demonstrated 94% sensitivity and 70% specificity. 

“The system was shown to be capable of detecting diagnostically significant information in the population under test and can be used to improve the current clinical standard. Furthermore, the platform has the potential to be used in a domestic environment and is therefore capable of detecting early changes in candidate biomarkers when measured over a period of time.”, the authors concluded.

 

Read the original article: A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection

Pouriya Bayat

Pouriya is a microfluidic production engineer at uFluidix. He received his B.Sc. and M.A.Sc. both in Mechanical Engineering from Isfahan University of Technology and York University, respectively. During his master's studies, he had the chance to learn the foundations of microfluidic technology at ACUTE Lab where he focused on designing microfluidic platforms for cell washing and isolation. Upon graduation, he joined uFluidix to even further enjoy designing, manufacturing, and experimenting with microfluidic chips. In his free time, you might find him reading a psychology/philosophy/fantasy book while refilling his coffee every half an hour. Is there a must-read book in your mind, do not hesitate to hit him up with your to-read list.

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidic Mapping of the Molecular Aging of Protein Condensates

Biomolecular condensates, membraneless structures formed through phase separation of proteins and nucleic acids, play a…

October 7, 2025

A Modular Microfluidic Platform for Real-Time Biofilm Analysis

Biofilms, dense microbial communities on medical devices and tissues, are notoriously resistant to antibiotics, causing…

September 26, 2025

Microfluidic Nanoplasmonic Patch for Metabolite Profiling in Sweat

Tracking how our bodies respond to food, exercise, and stress requires tools that can capture…

September 19, 2025

Capillary Constrictions Can Prime Cancer Cell Tumorigenicity: A Microfluidic Study

Metastasis, the spread of cancer cells from primary tumors to distant organs, is responsible for…

September 18, 2025

Microfluidic Control of Time-varying Stimuli Reveals Nuclear Remodeling in NF-κB Signaling

Understanding how cells decode signals from their environment is a central challenge in biology. One…

August 24, 2025

Microfluidic nano-plasmonic imaging platform for purification- and label-free single small extracellular vesicle characterization

The detection and analysis of small extracellular vesicles (sEVs), such as exosomes, has attracted significant…

August 24, 2025