Latest Research

Microfluidic gastrointestinal tissue-mimetic microenvironments for long-term organoid culture

Abstract

“Matrigel, a mouse tumor extracellular matrix protein mixture, is an indispensable component of most organoid tissue culture. However, it has limited the utility of organoids for drug development and regenerative medicine due to its tumor-derived origin, batch-to-batch variation, high cost, and safety issues. Here, we demonstrate that gastrointestinal tissue-derived extracellular matrix hydrogels are suitable substitutes for Matrigel in gastrointestinal organoid culture. We found that the development and function of gastric or intestinal organoids grown in tissue extracellular matrix hydrogels are comparable or often superior to those in Matrigel. In addition, gastrointestinal extracellular matrix hydrogels enabled long-term subculture and transplantation of organoids by providing gastrointestinal tissue-mimetic microenvironments. Tissue-specific and age-related extracellular matrix profiles that affect organoid development were also elucidated through proteomic analysis. Together, our results suggest that extracellular matrix hydrogels derived from decellularized gastrointestinal tissues are effective alternatives to the current gold standard, Matrigel, and produce organoids suitable for gastrointestinal disease modeling, drug development, and tissue regeneration.

Microfluidic system for dynamic culture and mass production of GI organoids in ECM hydrogels. Schematic illustration of (a) chip design and (b) the working principle of the microfluidic system for dynamic culture using a rocker. Mass production of (c) gastric and (d) intestinal organoids in GI tissue-derived ECM hydrogels using the microfluidic system. Gastric and intestinal organoids were observed at day 5 and day 6 in the culture, respectively (scale bars = 1 mm). Representative images from three independent experiments are shown in (c) and (d). Reproduced under Creative Commons Attribution 4.0 International License from Kim, S., Min, S., Choi, Y.S. et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun 13, 1692 (2022).


Figures and the abstract are reproduced from Kim, S., Min, S., Choi, Y.S. et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun 13, 1692 (2022). https://doi.org/10.1038/s41467-022-29279-4 under Creative Commons Attribution 4.0 International License.


Read the original article:
Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoidsPrebiotics and Postbiotics Synergistic Delivery Microcapsules from Microfluidics for Treating Colitis

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Chromatin Dynamics and Nuclear Condensate Behavior: Insights From a Microfluidic Assay

Understanding how cellular components, especially chromatin and nuclear condensates, respond to mechanical forces during confined…

November 25, 2024

Advances in High-Accuracy, High-Throughput Droplet Microfluidic Sorting Using Dual Fluorescence and Size-Based Selection

In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…

November 6, 2024

Microfluidically Engineered Hydrogel Beads for Complex Protein Characterization

In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…

October 19, 2024

Advancements in Protein Sizing with Single-Molecule Microfluidic Diffusional Sizing

Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…

September 14, 2024

Exploring the Stability of Tumor-on-a-Chip Models with Polydopamine Coatings

Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…

August 31, 2024

Microfluidic Platform for Monitoring Microglial Dynamics in Neuroinflammatory Conditions

Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…

August 19, 2024