Latest Research

Microfluidic detection of food allergens

Abstract

“The identification of accidental allergen contamination in processed foods is crucial for risk management strategies in the food processing industry to effectively prevent food allergy incidents. Here, we propose a newly designed passive stop valve with high pressure resistance performance termed an “air plug-in valve” to further improve microfluidic devices for the detection of target nucleic acids. By implementing the air plug-in valve as a permanent stop valve, a maximal allowable flow rate of 70 µL/min could be achieved for sequential liquid dispensing into an array of 10 microchambers, which is 14 times higher than that achieved with the previous valve arrangement using single-faced stop valves. Additionally, we demonstrate the simultaneous detection of multiple food allergens (wheat, buckwheat, and peanut) based on the colorimetric loop-mediated isothermal amplification assay using our diagnostic device with 10 microchambers compactly arranged in a 20-mm-diameter circle. After running the assays at 60 °C for 60 min, any combination of the three types of food allergens and tea plant, which were used as positive and negative control samples, respectively, yielded correct test results, without any cross-contamination among the microchambers. Thus, our diagnostic device will provide a rapid and easy sample-to-answer platform for ensuring food safety and security.

“Schematic representation of the microfluidic diagnostic device allowing sequential liquid dispensing for multiplexed genetic allergen detection and fabricated using a combination of a soft lithography process and a wax reflow process. (a) A fabricated PDMS microfluidic device consisting of an array of five reaction microchambers (~ 3 µL each) was filled with green-colored water. (b) A piece of wax was placed on the top surface of each SU-8 chamber mold pattern. (c) Semi-ellipsoid-shaped wax molds formed with a uniform shape after heating at 135 °C for 3 min. (d) Scanning electron microscopy images of the PDMS microchamber. (e) 3D image and cross-sectional profiles of the PDMS microchamber.” Reproduced under Creative Commons Attribution 4.0 International License from Natsuhara, D., Misawa, S., Saito, R. et al. A microfluidic diagnostic device with air plug-in valves for the simultaneous genetic detection of various food allergens. Sci Rep 12, 12852 (2022).


Figures and the abstract are reproduced from
Natsuhara, D., Misawa, S., Saito, R. et al. A microfluidic diagnostic device with air plug-in valves for the simultaneous genetic detection of various food allergens. Sci Rep 12, 12852 (2022). https://doi.org/10.1038/s41598-022-16945-2

Read the original article: A microfluidic diagnostic device with air plug-in valves for the simultaneous genetic detection of various food allergens

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Chromatin Dynamics and Nuclear Condensate Behavior: Insights From a Microfluidic Assay

Understanding how cellular components, especially chromatin and nuclear condensates, respond to mechanical forces during confined…

November 25, 2024

Advances in High-Accuracy, High-Throughput Droplet Microfluidic Sorting Using Dual Fluorescence and Size-Based Selection

In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…

November 6, 2024

Microfluidically Engineered Hydrogel Beads for Complex Protein Characterization

In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…

October 19, 2024

Advancements in Protein Sizing with Single-Molecule Microfluidic Diffusional Sizing

Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…

September 14, 2024

Exploring the Stability of Tumor-on-a-Chip Models with Polydopamine Coatings

Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…

August 31, 2024

Microfluidic Platform for Monitoring Microglial Dynamics in Neuroinflammatory Conditions

Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…

August 19, 2024