“Messenger RNA (mRNA) delivery provides gene therapy with the potential to achieve transient therapeutic efficacy without risk of insertional mutagenesis. Amongst other applications, mRNA can be employed as a platform to deliver gene editing molecules, to achieve protein expression as an alternative to enzyme replacement therapies, and to express chimeric antigen receptors (CARs) on immune cells for the treatment of cancer. We designed a novel microfluidic device that allows for efficient mRNA delivery via volume exchange for convective transfection (VECT). In the device, cells flow through a ridged channel that enforces a series of ultra-fast and large intensity deformations able to transiently open pores and induce convective transport of mRNA into the cell. Here, we describe efficient delivery of mRNA into T cells, natural killer (NK) cells and hematopoietic stem and progenitor cells (HSPCs), three human primary cell types widely used for ex vivo gene therapy applications. Results demonstrate that the device can operate at a wide range of cell and payload concentrations and that ultra-fast compressions do not have a negative impact on T cell function, making this a novel and competitive platform for the development of ex vivo mRNA-based gene therapies and other cell products engineered with mRNA.”
“Optimization of a microfluidic device for volume exchange for convective transfection (VECT) in human primary cells. (a) Top-view microscopic image of the device, showing the shape of the ridge elements across the channel. (b) Top, representation of the cross section highlighted in yellow in (a), depicting how the ridges are distributed along the channel. Bottom, representation of the mechanical processing experienced by the cells. (c) Fluidic simulation of the velocity of the liquid being run in a working device. (d) Gap size optimization for the transfection of GFP-encoding mRNA in T cells performed with devices ranging from 3.5 to 6 µm (Mean ± SD, n = 3). ” Reproduced under Creative Commons Attribution 4.0 International License. from Jocelyn Loo., et al. Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Sci., Rep., 11, 21407 (2021)
Loo, J., Sicher, I., Goff, A. et al. Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Sci Rep 11, 21407 (2021). under Creative Commons Attribution 4.0 International License
Read the original article: Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations
Leukapheresis is a critical treatment for children with symptomatic hyperleukocytosis, a condition where extremely high…
Despite the significant advancements brought by immune checkpoint inhibitors (ICIs) in melanoma treatment, patient responses…
Traditional developmental toxicity (DevTox) studies largely rely on mammalian models to assess chemical impacts on…
Circulating tumor cells (CTCs) hold the potential for cancer diagnosis and monitoring, offering a non-invasive…
Leukocyte differentiation and counting are critical for clinical diagnostics but are hindered by the low…
Screening for microbial proteolytic activity is essential in various biotechnological applications, including bioenergy, food processing,…