Latest Research

Microfluidic analysis of peptides reveals a correlation between physio-chemical properties and biological activity

“Antimicrobial resistance challenges the ability of modern medicine to contain infections. Given the dire need for new antimicrobials, polypeptide antibiotics hold particular promise. These agents hit multiple targets in bacteria starting with their most exposed regions—their membranes. However, suitable approaches to quantify the efficacy of polypeptide antibiotics at the membrane and cellular level have been lacking. Here, we employ two complementary microfluidic platforms to probe the structure–activity relationships of two experimental series of polypeptide antibiotics. We reveal strong correlations between each peptide’s physicochemical activity at the membrane level and biological activity at the cellular level. We achieve this knowledge by assaying the membranolytic activities of the compounds on hundreds of individual giant lipid vesicles, and by quantifying phenotypic responses within clonal bacterial populations with single-cell resolution. Our strategy proved capable of detecting differential responses for peptides with single amino acid substitutions between them, and can accelerate the rational design and development of peptide antimicrobials.

“Probing the biological activity of experimental polypeptide antibiotics with single-cell resolution. The mother-machine microfluidic device, whose schematic is shown in (A), consists of a “Main channel” for seeding the connected side channels or “wells” of the device with cells. Drugs, nutrients, and viability stains are then dosed to the trapped cells via the main channel. In the microscopy images tracking individual wells in (B) and (C) above, we observe examples of individual susceptible (B) and survivor (C) cells in response to peptide treatment in the mother-machine microfluidic device. The two examples above are taken from the same experiment and show the contrasting responses of two clonal E. coli cells to the peptide bienK11 (10 µM). The cell shown in (B) was susceptible to the treatment, halting growth during the 3 h of drug dosage and disintegrating thereafter when the drug was replaced with fresh Lysogeny Broth (LB) and incubated overnight (O/N). The disintegration is clearly visible when comparing the 4 h and O/N time-points—in the final fluorescence image panel, taken after O/N LB treatment, we see the debris of the cell stained with the dead stain propidium iodide (PI). In contrast, the cell shown in (C) resisted the treatment, growing and dividing even during peptide delivery, with no PI staining in the daughter cells at the end of the experiment.”. Reproduced under Creative Commons Attribution 4.0 International License Cama, J., Al Nahas, K., Fletcher, M. et al. An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibioticsSci Rep 12, 4005 (2022).

 

Figures and the abstract are reproduced from Cama, J., Al Nahas, K., Fletcher, M. et al. An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics. Sci Rep 12, 4005 (2022). https://doi.org/10.1038/s41598-022-07973-z under Creative Commons Attribution 4.0 International License


Read the original article:
An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Chromatin Dynamics and Nuclear Condensate Behavior: Insights From a Microfluidic Assay

Understanding how cellular components, especially chromatin and nuclear condensates, respond to mechanical forces during confined…

November 25, 2024

Advances in High-Accuracy, High-Throughput Droplet Microfluidic Sorting Using Dual Fluorescence and Size-Based Selection

In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…

November 6, 2024

Microfluidically Engineered Hydrogel Beads for Complex Protein Characterization

In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…

October 19, 2024

Advancements in Protein Sizing with Single-Molecule Microfluidic Diffusional Sizing

Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…

September 14, 2024

Exploring the Stability of Tumor-on-a-Chip Models with Polydopamine Coatings

Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…

August 31, 2024

Microfluidic Platform for Monitoring Microglial Dynamics in Neuroinflammatory Conditions

Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…

August 19, 2024