Latest Research

Mechanotyping of individual cells using deep-learning assisted microfluidics

Abstract

“Mechanical properties of cells are important features that are tightly regulated and are dictated by various pathologies. Deformability cytometry allows for the characterization of the mechanical properties at a rate of hundreds of cells per second, opening the way to differentiating cells via mechanotyping. A remaining challenge for detecting and classifying rare sub-populations is the creation of a combined experimental and analysis protocol that approaches the maximum potential classification accuracy for single cells. In order to find this maximum accuracy, we designed a microfluidic channel that subjects each cell to repeated deformations and relaxations and provides a comprehensive set of mechanotyping parameters. We track the shape dynamics of individual cells with high time resolution and apply sequence-based deep learning models for feature extraction. In order to create a dataset based solely on differing mechanical properties, a model system was created with treated and untreated HL60 cells. Treated cells were exposed to chemical agents that perturb either the actin or microtubule networks. Multiple recurrent and convolutional neural network architectures were trained using time sequences of cell shapes and were found to achieve high classification accuracy based on cytoskeletal properties alone. The best model classified two of the sub-populations of HL60 cells with an accuracy over 90%, significantly higher than the 75% we achieved with traditional methods. This increase in accuracy corresponds to a fivefold increase in potential enrichment of a sample for a target population. This work establishes the application of sequence-based deep learning models to dynamic deformability cytometry.

Principles of repeated mechanotyping. (a) Channel design utilizing sheath flow, a high-powered LED, and a microscope. The microfluidic channel that enables characterization and classification contains a cavity placed between two narrow zones. (b) Data are captured by a high-speed camera, creating videos at 11 k fps. Cell borders are detected and fit using Mask-RCNN. (c) The cell deformation, AR, was quantified as the ratio of two axes of an ellipse that approximates the cell’s shape. (d) (Top) The aspect ratio vs position relative to channel entrance of a single cell as it passes through the channel. (Bottom) COMSOL simulation showing the derivative of velocity vs channel position, which is proportional to the shear stress. Region 1 (R1) and Region 3 (R3), denoted by red and yellow regions, are where the cells undergo deformation. Region 2 (R2) and Region 4 (R4), denoted by green and blue regions, are where the cells undergo relaxation. Reproduced under Creative Commons Attribution 4.0 International License from Cody Combs, Daniel D. Seith, Matthew J. Bovyn, Steven P. Gross, Xiaohui Xie, and Zuzanna S. Siwy, “Deep learning assisted mechanotyping of individual cells through repeated deformations and relaxations in undulating channels”, Biomicrofluidics 16, 014104 (2022).


Figures and the abstract are reproduced from Cody Combs, Daniel D. Seith, Matthew J. Bovyn, Steven P. Gross, Xiaohui Xie, and Zuzanna S. Siwy , “Deep learning assisted mechanotyping of individual cells through repeated deformations and relaxations in undulating channels”, Biomicrofluidics 16, 014104 (2022) https://doi.org/10.1063/5.0077432 under Creative Commons Attribution 4.0 International License.


Read the original article:
Deep learning assisted mechanotyping of individual cells through repeated deformations and relaxations in undulating channels featured

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Understanding Microbiome Influence on Melanoma Treatment Using Microfluidics Technology

Despite the significant advancements brought by immune checkpoint inhibitors (ICIs) in melanoma treatment, patient responses…

February 18, 2025

Microfluidic Research on C. elegans for Developmental Toxicity Testing: A Novel Machine Learning Approach

Traditional developmental toxicity (DevTox) studies largely rely on mammalian models to assess chemical impacts on…

February 4, 2025

Advancing Liquid Biopsies with High-Throughput Microfluidics

Circulating tumor cells (CTCs) hold the potential for cancer diagnosis and monitoring, offering a non-invasive…

January 20, 2025

Development of a Microfluidic Impedance Flow Cytometer

Leukocyte differentiation and counting are critical for clinical diagnostics but are hindered by the low…

January 6, 2025

Enhanced Screening of Proteolytic Microorganisms Using a Passive Droplet Microfluidic Platform

Screening for microbial proteolytic activity is essential in various biotechnological applications, including bioenergy, food processing,…

December 17, 2024

Chromatin Dynamics and Nuclear Condensate Behavior: Insights From a Microfluidic Assay

Understanding how cellular components, especially chromatin and nuclear condensates, respond to mechanical forces during confined…

November 25, 2024