Latest Research

High-throughput droplet microfluidic platform helps researchers to generate pharmaceutically relevant compound libraries

Abstract

“The implementation of continuous flow technology is critical towards enhancing the application of photochemical reactions for industrial process development. However, there are significant time and resource constraints associated with translating discovery scale vial-based batch reactions to continuous flow scale-up conditions. Herein we report the development of a droplet microfluidic platform, which enables high-throughput reaction discovery in flow to generate pharmaceutically relevant compound libraries. This platform allows for enhanced material efficiency, as reactions can be performed on picomole scale. Furthermore, high-throughput data collection via on-line ESI mass spectrometry facilitates the rapid analysis of individual, nanoliter-sized reaction droplets at acquisition rates of 0.3 samples/s. We envision this high-throughput screening platform to expand upon the robust capabilities and impact of photochemical reactions in drug discovery and development.

“Development of a photochemical droplet microfluidics platform” Reproduced under a Creative Commons Attribution 4.0 International License from Sun, A.C., Steyer, D.J., Allen, A.R. et al. A droplet microfluidic platform for high-throughput photochemical reaction discovery. Nat Commun 11, 6202 (2020).


Figures and the abstract are reproduced
Sun, A.C., Steyer, D.J., Allen, A.R. et al. A droplet microfluidic platform for high-throughput photochemical reaction discovery. Nat Commun 11, 6202 (2020). https://doi.org/10.1038/s41467-020-19926-z  under a Creative Commons Attribution 4.0 International License.


Read the original article:
A droplet microfluidic platform for high-throughput photochemical reaction discovery

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

High-Precision Cell Classification via Mechanical Traits Within Microfluidic Systems

Accurate sorting of cells without using external labels is often challenging, especially when dealing with…

March 14, 2025

Exploring Microfluidic Leukapheresis for Pediatric Leukemia

Leukapheresis is a critical treatment for children with symptomatic hyperleukocytosis, a condition where extremely high…

March 3, 2025

Understanding Microbiome Influence on Melanoma Treatment Using Microfluidics Technology

Despite the significant advancements brought by immune checkpoint inhibitors (ICIs) in melanoma treatment, patient responses…

February 18, 2025

Microfluidic Research on C. elegans for Developmental Toxicity Testing: A Novel Machine Learning Approach

Traditional developmental toxicity (DevTox) studies largely rely on mammalian models to assess chemical impacts on…

February 4, 2025

Advancing Liquid Biopsies with High-Throughput Microfluidics

Circulating tumor cells (CTCs) hold the potential for cancer diagnosis and monitoring, offering a non-invasive…

January 20, 2025

Development of a Microfluidic Impedance Flow Cytometer

Leukocyte differentiation and counting are critical for clinical diagnostics but are hindered by the low…

January 6, 2025