“A deformable microfluidic system and a fluidic dynamic model have been successfully coupled to understand the dynamic fluid–structure interaction in transient flow, designed to understand the dentine hypersensitivity caused by hydrodynamic theory. The Polydimethylsiloxane thin sidewalls of the microfluidic chip are deformed with air pressure ranging from 50 to 500 mbar to move the liquid meniscus in the central liquid channel. The experiments show that the meniscus sharply increased in the first 10th of second and the increase is nonlinearly proportional to the applied pressure. A theoretical model is developed based on the unsteady Bernoulli equation and can well predict the ending point of the liquid displacement as well as the dynamics process, regardless of the wall thickness. Moreover, an overshooting and oscillation phenomenon is observed by reducing the head loss coefficient by a few orders which could be the key to explain the dentine hypersensitivity caused by the liquid movement in the dentine tubules.”
Figures and the abstract are reproduced from Pas, C.t., Du, K., Pan, L. et al. Understanding the dynamics of fluid–structure interaction with an Air Deflected Microfluidic Chip (ADMC). Sci Rep 12, 20399 (2022). https://doi.org/10.1038/s41598-022-24112-w under a Creative Commons Attribution 4.0 International License.
Read the original article: Understanding the dynamics of fluid–structure interaction with an Air Deflected Microfluidic Chip (ADMC)
In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…
In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…
Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…
Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…
Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…
Recent advancements in microfabrication of microfluidic chips are pushing the boundaries of nanoparticle design, offering…