Latest Research

Dropseq chips help researchers to study the transcriptional mechanisms of stress-related mood disorder major depression

Recent technological developments including microfluidics have facilitated genome-wide transcriptional profiling in select brain regions. These studies can be employed to discover correlations between altered transcriptional activity across brain regions with stress-related mood disordered leading to a better understanding of the molecular underlying driving mechanisms. Here, in a recent study published in Nature Communications, researchers from the University of Pennsylvania use dropseq chips microfabricated by uFluidix to study the underlying transcriptional mechanisms of stress-related mood disorder major depression. 

Abstract

“Although the synaptic alterations associated with the stress-related mood disorder major depression has been well-documented, the underlying transcriptional mechanisms remain poorly understood. Here, we perform complementary bulk nuclei- and single-nucleus transcriptome profiling and map locus-specific chromatin interactions in mouse neocortex to identify the cell type-specific transcriptional changes associated with stress-induced behavioral maladaptation. We find that cortical excitatory neurons, layer 2/3 neurons in particular, are vulnerable to chronic stress and acquire signatures of gene transcription and chromatin structure associated with reduced neuronal activity and expression of Yin Yang 1 (YY1). Selective ablation of YY1 in cortical excitatory neurons enhances stress sensitivity in both male and female mice and alters the expression of stress-associated genes following an abbreviated stress exposure. These findings demonstrate how chronic stress impacts transcription in cortical excitatory neurons and identify YY1 as a regulator of stress-induced maladaptive behavior in mice.

Dropseq microfluidic chips microfabricated by uFluidix

The abstract is reproduced from Kwon, D.Y., Xu, B., Hu, P. et al. Neuronal Yin Yang1 in the prefrontal cortex regulates transcriptional and behavioral responses to chronic stress in mice. Nat Commun 13, 55 (2022). https://doi.org/10.1038/s41467-021-27571-3 under Creative Commons Attribution 4.0 International License


Read the original article:
Neuronal Yin Yang1 in the prefrontal cortex regulates transcriptional and behavioral responses to chronic stress in mice

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Understanding Microbiome Influence on Melanoma Treatment Using Microfluidics Technology

Despite the significant advancements brought by immune checkpoint inhibitors (ICIs) in melanoma treatment, patient responses…

February 18, 2025

Microfluidic Research on C. elegans for Developmental Toxicity Testing: A Novel Machine Learning Approach

Traditional developmental toxicity (DevTox) studies largely rely on mammalian models to assess chemical impacts on…

February 4, 2025

Advancing Liquid Biopsies with High-Throughput Microfluidics

Circulating tumor cells (CTCs) hold the potential for cancer diagnosis and monitoring, offering a non-invasive…

January 20, 2025

Development of a Microfluidic Impedance Flow Cytometer

Leukocyte differentiation and counting are critical for clinical diagnostics but are hindered by the low…

January 6, 2025

Enhanced Screening of Proteolytic Microorganisms Using a Passive Droplet Microfluidic Platform

Screening for microbial proteolytic activity is essential in various biotechnological applications, including bioenergy, food processing,…

December 17, 2024

Chromatin Dynamics and Nuclear Condensate Behavior: Insights From a Microfluidic Assay

Understanding how cellular components, especially chromatin and nuclear condensates, respond to mechanical forces during confined…

November 25, 2024