“Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.”
Figures and the abstract are reproduced from Clark, I.C., Mudvari, P., Thaploo, S. et al. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature (2023). https://doi.org/10.1038/s41586-022-05556-6 under a Creative Commons Attribution 4.0 International License.
Read the original article: HIV silencing and cell survival signatures in infected T cell reservoirs
In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…
In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…
Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…
Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…
Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…
Recent advancements in microfabrication of microfluidic chips are pushing the boundaries of nanoparticle design, offering…