Latest Research

An integrated microfluidic chip for isolation, culture and drug susceptibility testing of cancer cells

Abstract

“Cancer patients with advanced disease are characterized by intrinsic challenges in predicting drug response patterns, often leading to ineffective treatment. Current clinical practice for treatment decision-making is commonly based on primary or secondary tumour biopsies, yet when disease progression accelerates, tissue biopsies are not performed on a regular basis. It is in this context that liquid biopsies may offer a unique window to uncover key vulnerabilities, providing valuable information about previously underappreciated treatment opportunities. Here, we present MyCTC chip, a novel microfluidic device enabling the isolation, culture and drug susceptibility testing of cancer cells derived from liquid biopsies. Cancer cell capture is achieved through a label-free, antigen-agnostic enrichment method, and it is followed by cultivation in dedicated conditions, allowing on-chip expansion of captured cells. Upon growth, cancer cells are then transferred to drug screen chambers located within the same device, where multiple compounds can be tested simultaneously. We demonstrate MyCTC chip performance by means of spike-in experiments with patient-derived breast circulating tumour cells, enabling >95% capture rates, as well as prospective processing of blood from breast cancer patients and ascites fluid from patients with ovarian, tubal and endometrial cancer, where sensitivity to specific chemotherapeutic agents was identified. Together, we provide evidence that MyCTC chip may be used to identify personalized drug response patterns in patients with advanced metastatic disease and with limited treatment opportunities.

 

“MyCTC chip design. a Design of the MyCTC chip, containing a PDMS layer (top) and COC layer including the microfluidic structures (bottom). b Image showing the MyCTC chip, including a detailed view of the capture and culture section (red) and drug screen chamber (blue). c Focus stacked images showing the capture and culture chamber and drug screen chamber. d Schematic representation of the CTC capture process of the MyCTC chip” Reproduced under a Creative Commons Attribution 4.0 International License from Schwab, F.D., Scheidmann, M.C., Ozimski, L.L. et al. MyCTC chip: microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies. Microsyst Nanoeng 8, 130 (2022).


Figures and the abstract are reproduced from Schwab, F.D., Scheidmann, M.C., Ozimski, L.L. et al. MyCTC chip: microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies. Microsyst Nanoeng 8, 130 (2022). https://doi.org/10.1038/s41378-022-00467-y
 under a Creative Commons Attribution 4.0 International License.


Read the original article:
MyCTC chip: microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Advances in High-Accuracy, High-Throughput Droplet Microfluidic Sorting Using Dual Fluorescence and Size-Based Selection

In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…

November 6, 2024

Microfluidically Engineered Hydrogel Beads for Complex Protein Characterization

In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…

October 19, 2024

Advancements in Protein Sizing with Single-Molecule Microfluidic Diffusional Sizing

Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…

September 14, 2024

Exploring the Stability of Tumor-on-a-Chip Models with Polydopamine Coatings

Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…

August 31, 2024

Microfluidic Platform for Monitoring Microglial Dynamics in Neuroinflammatory Conditions

Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…

August 19, 2024

Advancing Nanoparticle Design: Microfluidic Synthesis of Complex Liposomes

Recent advancements in microfabrication of microfluidic chips are pushing the boundaries of nanoparticle design, offering…

July 29, 2024