Recent advancements in microfabrication of microfluidic chips are pushing the boundaries of nanoparticle design, offering new possibilities for drug delivery and biotechnology applications. A team of researchers has developed a novel method for creating nanoscale liposomes with enhanced structural complexity, addressing longstanding limitations in the field.
Existing soft-matter nanoparticles, such as liposomes, have been constrained by their simplistic structures, typically consisting of a single membrane-bound aqueous compartment. This lack of architectural complexity has limited their functional scope, particularly in areas requiring precise control over multiple payload release or compartmentalized reactions.
“Given that form and function are intertwined, this lack of architectural complexity restricts the development of more sophisticated properties. To address this, we have devised an engineering strategy combining microfluidics and conjugation chemistry to synthesize nanosized liposomes with two discrete compartments, one within another, which we term concentrisomes “, the authors explained.
The “concentrisomes” are nanoscale liposomes with two discrete compartments, one nested within another. Their method combines microfluidic hydrodynamic focusing (MHF) with conjugation chemistry, allowing unprecedented control over particle architecture and composition.The concentrisomes exhibited the capability for multi-stage and site-specific release of encapsulated agents. This was achieved by designing bilayers to respond to predetermined external stimuli, thus allowing for the controlled release of substances at specific times and locations. Such a feature is particularly beneficial for applications requiring the simultaneous delivery of multiple drugs with precise timing, such as in combination therapy.
The synthesis process involves two key steps utilizing microfluidic devices:
The researchers incorporated click chemistry (specifically, strain-promoted azide/alkyne cycloaddition) to facilitate the formation of the outer bilayer and control inter-bilayer spacing. This approach allows precise control over:
The microfluidic synthesis method yielded concentrisomes with several notable properties:
The development of concentrisomes marks a significant step forward in the design of nanoparticle systems for complex drug delivery and synthetic biology applications. Their ability to mimic biological compartmentalization, combined with the precision in functional design, opens up new avenues in targeted therapy and on-demand biochemical processes.
As research in this area progresses, we can expect to see further refinements in microfluidic microfabrication techniques and exploration of diverse applications for these sophisticated nanoparticles. The integration of this technology with other lab-on-chip modules for downstream processes like purification and sterilization presents exciting opportunities for future development in the field of nanomedicine and biotechnology.
Figures are reproduced from Pilkington, C.P., Gispert, I., Chui, S.Y. et al. Engineering a nanoscale liposome-in-liposome for in situ biochemical synthesis and multi-stage release. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01584-z under a CC BY 4.0 Attribution 4.0 International license.
Read the original article: Engineering a nanoscale liposome-in-liposome for in situ biochemical synthesis and multi-stage release
For more insights into the world of microfluidics and its burgeoning applications in biomedical research, stay tuned to our blog and explore the limitless possibilities that this technology unfolds. If you need high quality microfluidics chip for your experiments, do not hesitate to contact us.
In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…
In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…
Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…
Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…
Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…
Heart diseases, particularly those caused by ischemia, are a leading cause of morbidity and mortality…