“Current approaches for single molecule force spectroscopy are typically constrained by low throughput and high instrumentation cost. Herein, a low-cost, high throughput technique is demonstrated using microfluidics for multiplexed mechanical manipulation of up to ~4000 individual molecules via molecular fluid loading on-a-chip (FLO-Chip). The FLO-Chip consists of serially connected microchannels with varying width, allowing for simultaneous testing at multiple loading rates. Molecular force measurements are demonstrated by dissociating Biotin-Streptavidin and Digoxigenin-AntiDigoxigenin interactions along with unzipping of double stranded DNA of varying sequence under different dynamic loading rates and solution conditions. Rupture force results under varying loading rates and solution conditions are in good agreement with prior studies, verifying a versatile approach for single molecule biophysics and molecular mechanobiology. FLO-Chip enables straightforward, rapid, low-cost, and portable mechanical testing of single molecules that can be implemented on a wide range of microscopes to broaden access and may enable new applications of molecular force spectroscopy.”
Figures and the abstract are reproduced from Akbari, E., Shahhosseini, M., Robbins, A. et al. Low cost and massively parallel force spectroscopy with fluid loading on a chip. Nat Commun 13, 6800 (2022). https://doi.org/10.1038/s41467-022-34212-w under a Creative Commons Attribution 4.0 International License.
Read the original article: Low cost and massively parallel force spectroscopy with fluid loading on a chip
In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…
In the ever-evolving landscape of biochemical research, protein complexes characterization plays an important role in…
Understanding of a protein’s true behavior in biological systems remains a cornerstone for understanding biological…
Pancreatic cancer, notorious for its poor prognosis and rapid progression, remains a significant challenge in…
Understanding how microglia, the brain's immune cells, respond to inflammation is pivotal for grasping the…
Recent advancements in microfabrication of microfluidic chips are pushing the boundaries of nanoparticle design, offering…