Latest Research

3D morphable structures employed in microfluidic research

Abstract

“The geometric reconfigurations in three-dimensional morphable structures have a wide range of applications in flexible electronic devices and smart systems with unusual mechanical, acoustic, and thermal properties. However, achieving the highly controllable anisotropic transformation and dynamic regulation of architected materials crossing different scales remains challenging. Herein, we develop a magnetic regulation approach that provides an enabling technology to achieve the controllable transformation of morphable structures and unveil their dynamic modulation mechanism as well as potential applications. With buckling instability encoded heterogeneous magnetization profiles inside soft architected materials, spatially and temporally programmed magnetic inputs drive the formation of a variety of anisotropic morphological transformations and dynamic geometric reconfiguration. The introduction of magnetic stimulation could help to predetermine the buckling states of soft architected materials, and enable the formation of definite and controllable buckling states without prolonged magnetic stimulation input. The dynamic modulations can be exploited to build systems with switchable fluidic properties and are demonstrated to achieve capabilities of fluidic manipulation, selective particle trapping, sensitivity-enhanced biomedical analysis, and soft robotics. The work provides new insights to harness the programmable and dynamic morphological transformation of soft architected materials and promises benefits in microfluidics, programmable metamaterials, and biomedical applications.

“The elastomer matrix exhibits reversible deswelling and expansion properties by adding solvent 1 and 2. With geometric constraints and absorption of solvent 2, the elastomeric structure could generate buckling transformation providing a template-free manner for the formation of 3D continuous heterogeneous magnetization. Diverse transformation of elastomeric structures could be achieved by using programmed magnetic inputs.” Reproduced under a Creative Commons Attribution 4.0 International License from Xia, N., Jin, D., Pan, C. et al. Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization. Nat Commun 13, 7514 (2022).


Figures and the abstract are reproduced from
Xia, N., Jin, D., Pan, C. et al. Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization. Nat Commun 13, 7514 (2022). https://doi.org/10.1038/s41467-022-35212-6 under a Creative Commons Attribution 4.0 International License.


Read the original article:
Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidic Research on C. elegans for Developmental Toxicity Testing: A Novel Machine Learning Approach

Traditional developmental toxicity (DevTox) studies largely rely on mammalian models to assess chemical impacts on…

February 4, 2025

Advancing Liquid Biopsies with High-Throughput Microfluidics

Circulating tumor cells (CTCs) hold the potential for cancer diagnosis and monitoring, offering a non-invasive…

January 20, 2025

Development of a Microfluidic Impedance Flow Cytometer

Leukocyte differentiation and counting are critical for clinical diagnostics but are hindered by the low…

January 6, 2025

Enhanced Screening of Proteolytic Microorganisms Using a Passive Droplet Microfluidic Platform

Screening for microbial proteolytic activity is essential in various biotechnological applications, including bioenergy, food processing,…

December 17, 2024

Chromatin Dynamics and Nuclear Condensate Behavior: Insights From a Microfluidic Assay

Understanding how cellular components, especially chromatin and nuclear condensates, respond to mechanical forces during confined…

November 25, 2024

Advances in High-Accuracy, High-Throughput Droplet Microfluidic Sorting Using Dual Fluorescence and Size-Based Selection

In droplet microfluidics, high-throughput screening is critical for analyzing large cellular or molecular libraries at…

November 6, 2024