Active methods are developed to increase the efficiency and accuracy as well as the specificity of microfluidics cell sorters at the expense of using an external power field. The modularity and versatility of microfluidic chips allow various external sources to be integrated with the chips. Acoustic, magnetic, and dielectric forces are among the ones that are vastly used in microfluidic cell sorters.
Magnetophoresis, as the name implies, requires a magnetic force to sort the cells. Here, we need a permanent magnet along with magnetic cells for cell sorting.
Cells are not intrinsically magnetic. Therefore, they need to be rendered magnetic using standard immunomagnetic methods. The cells should be labelled first and then attached to magnetic beads. The magnet positioned near the channel exerts a magnetic force on the labelled cells. The force depends on the cell size. Thus, the larger cells lie closer to the wall than the smaller cells.
Dielectrophoresis refers to the movement of dielectric cells/particles in a non-uniform electrical field. Therefore, for dielectrophoresis, two things are required: A polarizable cell/particle and a non-uniform electrical field. Dielectrophoresis does not need the cells to be charged. In a uniform field, cells do not experience any forces. But, in a non-uniform field, the polarization of the cells leads to a positive or negative force. The size and direction of this force depend on the particles’ electric properties and the electric field. Cells have different dielectric properties thus respond differently to the non-uniform electric field. This difference is employed in dielectrophoretic microfluidic chips for sorting and separating the cells. The electric field can be adjusted based on the type and shape of the electrodes. For more information on different types of electrodes in microfluidic chips, please check the resources section below. The possibility of applying both negative and positive forces along with being label-free is the advantage of these microfluidic chips.
Learn more about the passive microfluidic cell sorting techniques such as inertial focusing, DLD, and microfiltration